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1. Introduction

Recall there are 6 Painlevé ODEs, the most general one being
P(VI). The latter comes in several guises, but in the ‘elliptic’ setting
of this seminar there is a preferred one. It reads

∂2
τλ =

3∑
s=0

cs ∂λ℘(λ+ ωs; 1/2, τ/2),

where ℘ is the Weierstrass function, =(τ) > 0, and

ω0 = 0, ω1 = 1/2, ω2 = τ/2, ω3 = 1/2 + τ/2,

with 1 and τ being the primitive ℘-periods.
It admits an isomonodromy interpretation, which can also be
formulated in terms of a zero-curvature Lax pair.

Simon Ruijsenaars (University of Leeds) Elliptic Painlevé-Calogero with 8 couplings EIS Workshop 3 / 22



The pertinent linear Lax ODE is of the Schrödinger form

(H(λ; x)− E)ψ(x) = 0,

with H(λ; x) given by

− d2

dx2 +
∂x℘(x)

℘(x)− ℘(λ)

d
dx

+
C

℘(x)− ℘(λ)
+

3∑
s=0

gs(gs − 1)℘(x + ωs).

The limit λ→ 0 yields the BC1 Calogero-Moser Hamiltonian

H(0; x) = − d2

dx2 +
3∑

s=0

gs(gs − 1)℘(x + ωs).

This Hamiltonian is also known as the 1-particle specialization of
the N-particle Inozemtsev integrable system. Furthermore, its
time-independent Schrödinger equation is the Heun equation in
elliptic form.
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Van Diejen [3] introduced an 8-coupling ‘relativistic’ elliptic
Hamiltonian whose associated Schrödinger equation can be
viewed as a difference equation counterpart of the 4-coupling
Heun ODE (in the above elliptic form). This Hamiltonian has a
great many specializations and confluence limits.
Sakai [2] introduced an 8-parameter elliptic difference equation,
which can be viewed as the most general equation in an extensive
hierarchy of (generalized) Painlevé equations.
In the recent joint paper Ref. [1] with Noumi and Yamada, we have
shown that one of the two linear Lax q-difference equations
associated with the nonlinear Sakai equation can be specialized
to the Schrödinger equation for van Diejen’s BC1 Hamiltonian.
In previous work [4], we proved that the spectrum of the latter has
W (E8)-invariance. Sakai’s equation has a W (E (1)

8 )-symmetry.
In the sequel we sketch the findings of Ref. [1].
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2. Van Diejen’s 8-coupling elliptic Hamiltonian
We start from the elliptic gamma function G(r ,a+,a−; x) given by

G(x) ≡
∞∏

m,n=0

1− exp
(
− (2m + 1)ra+ − (2n + 1)ra− − 2irx

)
1− exp

(
− (2m + 1)ra+ − (2n + 1)ra− + 2irx

) ,
with r ,<(aδ) > 0, δ = +,−. Obviously, G is a π/r -periodic
meromorphic function, which satisfies G(−x) = 1/G(x) and is
modular invariant (symmetric under swapping a+ and a−).
The building block for van Diejen’s Hamiltonian is one of the two
right-hand side functions arising from the analytic difference
equations (henceforth A∆Es)

G(x + iaδ/2)

G(x − iaδ/2)
= R−δ(x), δ = +,−,

namely,

R+(x) =
∞∏

m=0

[1− exp(2irx − (2m + 1)ra+)][x → −x ].
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Clearly R+ is an entire, even, π/r -periodic function without real
zeros; moreover, it satisfies the A∆E

R+(x + ia+/2) = −exp(−2irx)R+(x − ia+/2).

(In essence, R+ is one of Jacobi’s theta functions.)
Van Diejen’s operator is of the form

A+(γ; x) = V (γ; x) exp(−ia−d/dx) + (x → −x) + Vb(γ; x),

where

V (γ; x) ≡
∏7
µ=0 R+(x − iγµ − ia−/2)

R+(2x + ia+/2)R+(2x + ia+/2− ia−)
,

and Vb(γ; x) is an even elliptic function with periods π/r , ia+.
As such, Vb is uniquely determined up to a constant by specifying
the residues at its (generically) simple poles, which occur at the
zeros of the factors R+(±2x + ia+/2− ia−) of the shift coefficients
V (γ;±x).
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Hence, the poles occur at x ≡ ±xn, n = 0,1,2,3 (modulo the
elliptic lattice Λ), where

{x0, x1, x2, x3} := −ia−/2 + {0, π/2r , ia+/2, ia+/2 + π/2r}.

The residues at these poles are given by

Res(x0) = η
∏
µ

R+(iγµ),

Res(x1) = η
∏
µ

R+(iγµ + π/2r),

Res(x2) = η exp
(
− 2ra+ − r

∑
µ

γµ

)∏
µ

R+(iγµ + ia+/2),

Res(x3) = η exp
(
− 2ra+ − r

∑
µ

γµ

)∏
µ

R+(iγµ + ia+/2 + π/2r),

with

η := 1
/

4irR+(ia− + ia+/2)
∞∏

k=1

(1− exp(−2kra+))2.
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These residues are invariant under W (D8) (permutations and
even sign flips), and so is the (unspecified) additive constant.
Using a gauge transformation involving a product of G-functions,
the operator A+(γ; x) can be transformed to

A+(γ; x) = e−ia−d/dx + V (γ; x + ia−)V (γ;−x)eia−d/dx + Vb(γ; x).

This operator is W (D8)-invariant; for a+,a− > 0 it is also (formally)
self-adjoint.
Likewise, we can change the sign of γµ in V (γ; x) by using a
gauge factor

Gµ(x) ≡ G(x + iγµ)/G(x − iγµ).

In particular, we can use G0G1G2G3 to transform the shift
coefficient

Ṽ (γ; x) ≡
∏3
µ=0 R+(x + iγµ − ia−/2)

∏7
µ=4 R+(x − iγµ − ia−/2)

R+(2x + ia+/2)R+(2x + ia+/2− ia−)
,

(needed below) back to V (γ; x).
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3. The 8-parameter elliptic Painlevé Lax equation
Nowadays, another version of the elliptic gamma function is more
widely used, namely

Γp,q(z) ≡
∞∏

m,n=0

1− z−1pm+1qn+1

1− zpmqn .

It leads to the q-difference equation

Γp,q(qz) = [z]Γp,q(z),

with

[z] =
∞∏

m=0

(1− zpm)(1− z−1pm+1)

yielding the building block for the Lax equation associated to
Sakai’s elliptic Painlevé equation.
The relation to G(x) is given by the substitutions

p = exp(−2ra+), q = exp(−2ra−), z = exp(2irx − ra+ − ra−).
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Moreover, these substitutions yield the connection

[z] = R+((ln z)/2ir − ia+/2)

between the two building blocks.
Our aim is now to compare the time-independent Schrödinger
(‘relativistic Heun’) equation

(A+(γ; x)− E)ψ(x) = 0,

to the Lax q-difference equation, which is of the form

W−(z)y(z/q) + W+(z)y(qz)− R(z)y(z) = 0.

Clearly, we need the correspondence

ψ(x) = y(2irx − ra+ − ra−),

so we are reduced to comparing the coefficients of the two
equations. We proceed to discuss the Lax equation coefficients.
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The shift coefficients are given by

W−(z) ≡ A(k/z)B(z)F(qz)[k/q2z2],

W+(z) ≡ A(qz)B(k/qz)F(z)[k/z2],

with

A(z) ≡
4∏

j=1

[z/aj ], B(z) ≡
4∏

j=1

[z/bj ], F(z) ≡ Cz[z/λ][k/zλ].

Here, C can be viewed as a gauge parameter and k arises from
the extended affine E8 Weyl group picture associated with the
elliptic Sakai equation. Also, λ encodes one of the two initial
values for this equation.
In the additive coefficient R(z), the dependence on the 8
parameters aj ,bj , is given by a factor

U(z) ≡ A(z)B(z).

It is expedient to postpone the remaining details for R(z).

Simon Ruijsenaars (University of Leeds) Elliptic Painlevé-Calogero with 8 couplings EIS Workshop 12 / 22



4. Comparing the shift parts
The first order of business is to connect the 8 parameters γµ and
aj ,bj . We have gauge freedom in the shift coefficients, but not in
the additive parts. In particular, we can change signs of the γµ in
the former, but not in the latter. Therefore, the optimal choice is

aj = q exp(−2rγj−1), bj = q exp(−2rγj+3), j = 1,2,3,4,

since then we get the permutation-invariant function

U(z) =
4∏

j=1

[z/aj ][z/bj ] =
7∏

µ=0

R+(x − iγµ − ia−/2).

For the factors [k/zaj ] in W−(z) and the factors [k/qzbj ] in W+(z)
this choice yields

[k/zaj ] = R+(x + iγj−1 − (ln k)/2ir + 3ia−/2 + ia+),

[k/qzbj ] = R+(x + iγj+3 − (ln k)/2ir + 5ia−/2 + ia+).
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When we now choose

k = pq2 = exp(−2ra+) exp(−4ra−),

then the 8-parameter factors in W±(z) and Ṽ (γ;±x) become
equal. (Recall the shift coefficients Ṽ (γ;±x) arise from V (γ;±x)
by a gauge transformation.)
Using from now on the convention

f (x ± y) := f (x + y)f (x − y),

we also get

[k/z2][k/qz2][k/q2z2] = R+(2x + ia+/2± ia−)R+(2x + ia+/2).

The three factors on the rhs occur in the denominators of
Ṽ (γ;±x), so the next step is to divide the Lax equation by this
product.
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The result is that the shift part of the Lax equation is of the form

F(qz)Ṽ (γ; x)ψ(x − ia−) + qF(z)e8irx Ṽ (γ;−x)ψ(x + ia−),

with
F(z) = Cz[z/λ][pq2/zλ].

When we now set λ = qν and divide the shift part by

Cp−1z3[z/qν][p/zν],

then we obtain

e−4irx [z/ν]

[z/qν]
Ṽ (γ; x)ψ(x − ia−) + e4irx [pq/zν]

[p/zν]
Ṽ (γ;−x)ψ(x + ia−).
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Finally, setting ν = exp(−2rγ8), we get

[z/ν]

[z/qν]
=

R+(x − iγ8 + ia−/2)

R+(x − iγ8 − ia−/2)
,

[pq/zν]

[p/zν]
=

R+(x + iγ8 − ia−/2)

R+(x + iγ8 + ia−/2)
.

Thus we need only specialize γ8 to γ7 (say) to arrive at coefficients
Ṽ (γ̃;±x), with

γ̃µ ≡ γµ, µ = 0, . . . ,6, γ̃7 ≡ γ7 − a−.

Up to the plane wave factors, we therefore get the shift part of a
(gauge-transformed) van Diejen operator with γ7 → γ7 − a−.
To remove the plane waves, we can gauge transform with
g(x) ≡ R−(x ± ia−/2), since we have

1
g(x)

exp(δia−d/dx)g(x) = q−1e−4δirx exp(δia−d/dx), δ = +,−.

Now it remains to divide by q−1 to ‘get what we want’ as concerns
the shift part.
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5. The acid test

The upshot is that we have made several reparametrizations and
have divided the Lax equation by various factors, so as to tie in the
shift parts with those of van Diejen’s Hamiltonian. The key
question is therefore whether the resulting additive part in the Lax
equation can be tied in with Vb(x)− E .
Thus we now need to detail the additive coefficient of the Lax
equation. It is of the form

R(z) =
3∑

n=1

Sn(z).

The summands S1,S2 are of the form

S1(z) ≡ U(z)F(qz)G(k/z)[k/q2z2]/G(z),

S2(z) ≡ U(k/qz)F(z)G(qz)[k/z2]/G(k/qz),
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with the new factor G(z) given by

G(z) ≡ z[z/ξ1][z/ξ2].

Here, we have
ξ1ξ2 = `,

with

k2`2 = q
4∏

j=1

ajbj .

(Like k , the parameter ` stems from the extended affine E8 Weyl
group; moreover, ξ1 may be viewed as the second initial value for the
Sakai equation.)

The third summand reads

S3(z) ≡ −F(z)F(qz)F(z)[k/z2][k/qz2][k/q2z2]/G(z)G(k/qz),

where F(z) equals F(z) with ‘evolved’ parameters C, λ, k ≡ k/q.
Thus,

F(z) = Cz[z/λ][k/qzλ].
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The evolution of C and λ is fixed by requiring

F(ξj)F(ξj)[k/ξ2
j ][k/qξ2

j ] = G(k/ξj)G(k/qξj)U(ξj), j = 1,2.

(This amounts to demanding that R(z) have no poles at the zeros
z = ξ1, ξ2, of G(z).)
With R(z) now determined, we reparametrize it as before, using in
addition

ξi = q exp(−2rφi), i = 1,2, λ = q exp(−2rγ8).

Finally, we should divide R(z) by the various (reparametrized)
factors we needed to tie in the shift part of the Lax equation with
the one of A+(γ; x). After a straightforward (but long!) calculation,
the resulting additive coefficient Z (x) is of the form

Z (x) = E(x) + E(−x) + Ve(x),

with E and Ve detailed next.
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The ‘extra’ summand Ve is given by

Ve(x) ≡ CCe−2ra− R+(x ± i(γ8 − a−/2))R+(x ± i(γ8 − a−/2))∏2
j=1 R+(x ± i(φj + a−/2))

,

and is manifestly an even elliptic function.
The function E reads

E(x) ≡ −e−8irxe−4ra− R+(x − iγ8 + ia−/2)

R+(x − iγ8 − ia−/2)

×
∏7
µ=0 R+(x − iγµ − ia−/2)

R+(2x + ia+/2)R+(2x + ia+/2− ia−)

2∏
j=1

R+(x + iφj − ia−/2)

R+(x − iφj − ia−/2)
.

It is clearly π/r -periodic, but at face value it seems not to be
ia+-periodic. In fact, however, it is, due to the above relations.
The upshot is that Z (x) is an even elliptic function. By evennness,
it has no poles when the factors R+(±2x + ia+/2) vanish.
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Thanks to the evolution requirement on C and γ8, we get
vanishing pole residue sums for ±x ≡ iφ1 + ia−/2− ia+/2 and
±x ≡ iφ2 + ia−/2− ia+/2 (modulo the elliptic lattice Λ). But Z (x)
does have poles for ±x ≡ xn, n = 0,1,2,3, and also for
±x ≡ iγ8 + ia−/2− ia+/2 (mod Λ).
Taking γ8 equal to γ7, however, the latter poles drop out. Thus we
are left with the same pole locations as those in Vb(x). When we
now calculate the residues at these poles, they turn out to
coincide with those of Vb(γ̃; x).
As a consequence, we have

Vb(γ̃; x)− Z (x) =: E ,

with E depending on the parameters, but not on x : The acid test is
passed!
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